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Mach wave radiation studies have, so far, been concentrated on the sound 
radiated to large distances from the flow. Then, both a turbulent eddy and the 
distance it may travel during its coherent life, appear small to the distant 
observer, so that the sound arrives from one direction. When that direction is the 
Mach angle, a Mach wave is heard. This paper deals with a different situation, 
where, although a turbulent eddy appears small, the distance it travels does not. 
Sound arriving at the observer then comes from different directions at different 
times in the eddy’s life, so that Mach waves can only be radiated over a relatively 
small range, where the radiation angle corresponds to the Mach angle. In  that 
range the far field equations no longer apply. It is shown that, whereas the 
distant field increases with the cube of convection Mach number, M ,  and 
inversely with the square of distance travelled, l / P ,  this particular near field is 
of a type where the mean square density, 2, has the proportionality 

1. Some experimental findings 
The theory of aerodynamic sound production by supersonic turbulent flows 

throws emphasis on the highly directional Mach wave radiation. The theory 
predicts many features which are in accord with experimental data (Lighthill 
1963) and this agreement has given emphasis to the suggestion that Mach waves 
are the dominant source of noise in rocket exhaust flows. Very little is understood 
about the turbulence in highly sheared supersonic flow, and the Mach waves i t  
emits have not as yet been subjected to detailed experimental study, although 
the work reported by Laufer (1961, 1962, 1964) is a noted exception. 
Analytically, the connection between the Mach waves and the turbulent 
sources is an extremely simple one, an aspect that suggests that experi- 
ments carried out in the near field of rocket flows can be interpreted to 
throw light on the turbulence problem. Early shadowgraph pictures of Mach 
waves emitted by supersonic flow (such as those obtained at both the Langley 
Research Center in the U.S.A. and by Ricketsonl in England) show only straight 
wave-fronts that may be regarded as sections of Mach cones generated by the 
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rapidly moving eddies. However, more recent pictures taken a t  the Langley 
Research Center have resolved waves in a much later stage of development, and 
indicated what is apparently a strong system of spherical wavefronts that form 
some 20 or so nozzle diameters from the flow. Although it was always clear that 
the small straight wave-fronts could not be self-preserving, and would eventually 
develop into spherical fronts, that aspect of the problem had been passed over 
very lightly in the early theories. But the clear evidence of spherical wave 
formation evident in the recent pictures brings forward this point very forcibly. 
Important questions are raised, not the least of which is, whether or not the 
intense spherical waves are in fact developed from the elementary Mach waves 
visible in the pictures nearer the turbulent flow? Even if they are, that develop- 
ment will have to be understood before one can gain much value from near field 
studies. It was an attempt to answer some of these questions that prompted the 
present analytical study of Mach wave development. It soon became evident that 
there was very little subtlety in the non-linear growth of distant spherical waves, 
for they should be nothing more than the spherical waves whose coalescence near 
the flow, formed the conical Mach fronts. Obviously, they will be centred on their 
position of origin, a point that can easily be checked from the shadowgraph 
pictures. The study did, however, raise a more interesting point regarding the 
existence of a near Mach wave-field. This is of course contrary to our initial con- 
ception of the problem where simple sources, which have no near field, are the 
radiators. But the near field is of rather a novel kind and it is that aspect we 
describe below. 

2. The theory of quadrupole Mach wave emission 

simple source distribution in the turbulent flow 
The general aerodynamic noise equation relates the radiated density to a 

The simple source strength, being a double divergence, integrates instantaneously 
to zero, showing that the sources are arranged throughout the flow in opposing 
pairs so that they form multipoles. Lighthill showed how they are equivalent to a 
volume distribution of quadrupoles, and how this property requires a modification 
of equation (2.1) that displays the quadrupole features more directly. When in the 
far field of each individual correlated region, the proper alternative form may be 
written 

( 2 . 2 )  

Convection of the turbulence with constant speed uo M in the downstream, or 1, 
direction gives the tensor time derivative a2Tr/8t2 a deceptively large appearance, 
for it  consists, in part, of terms of the type aoM(aT,/ayl). Such terms are them- 
selves space derivatives, or divergences, which, for the same reason that prompted 
the development of equation ( 2 . 2 )  from equation (2.1), integrate to zero and 
generate no sound. To overcome this difficulty and to emphasize that small part 
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of the turbulence responsible for the generation of sound, Lighthill chose moving 
axes, co-ordinates q, and showed how? 

where 0 is the angle of sound emission measured from the downstream direction. 
The volume element was also changed in the moving-axis system, but for the 
present we shall not introduce that effect here, since i t  follows naturally in the 
work we describe. 

The most refined equation describing sound emission by convected turbulence 

We use the term 'refined' deliberately, for this equation is in essence no more 
correct than any of the others; they are all exact in the far field. The developments 
are essentially of a type that bring into the open important features of the 
radiation and do not leave them hidden in some subtle property of the integral. 

It is evident that equation (2 .5 )  is singular, whenever (1 -Mcosf9) = 0. We 
know now that this singularity is associated with Mach waves, which result when 
each simple source radiates independently of its opposing partner so that the 
quadrupole equation is no longer the one that best describes it. We must then 
revert to the simple source equation (2.1) expressed in the more convenient Mach 
wave form (Ffowcs Williams 1963) 

(2.6) 

Here again, the suffix r implies the radiation direction, and repeated suffices 
are not to be summed. The expression of the two equations (2.5) and (2.6) in a 
form that best describes the sound of a single eddy requires one further step. 
The total radiation will depend on the volume occupied by the eddy during its 
radiation, or retarded, time. This is clearly true since the equation integrates a 
constant strength density only over that volume where a source exists a t  the 
proper time. If the motion of the source is always such as to place it in a position 
where it can emit irrespective of time, i.e. if i t  approaches the observer with 
precisely the speed of sound, then it will appear that an infinite volume would 
contain a finite source, and the sound would be arbitrarily large. This is really the 
case where Mach waves are relevant, for the more distant parts of the eddy emit 
first. At a later time the nearer elements make their contribution, but by then 
the distant part already considered has moved to the new location and is to be 
considered again. The singular emission is avoided by recognizing that the eddy 
has a limited lifetime, 7 say, so that i t  only exists over a length a, T in the radiation 
direction. The Mach wave equation can then be approximated by 

-f The symbol f = implies that related functions generate identical distant sound 
fields; i.e. they integrate at retarded time to identical values. 
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This is to be interpreted as the Mach wave of a single eddy. The volume occupied 
by the quadrupole during emission in one of its more classical phases is well 
known to be %(l-Mc0s8)-~ (Lighthill 1952, Ffowcs Williams 1963) so that 
equation ( 2 . 5 )  can be approximated by 

(2.8) 

This represents the quadrupole radiation from a single eddy. These equations are 
the ones familiar to the theory and will now be used to generate the description 
of a transition field, where although the distance r may put the observer in the 
far field of an eddy at any one instant, he is still close in comparison with the 
distance travelled by the eddy during its coherent life. 

3. Near field Mach wave emission 
We have seen that an essential feature determining the strength of Mach waves 

radiating to large distances is that they emit coherently over their entire lifetime 
so that they occupy an effective volume a, r12. It is clearly a necessary condition 
for the analytical consistency of the theory that all that volume should be con- 
tained in the narrow region where the angle made between the observation point 
and the direction of flow should be 8 = cos-1 M-l. If that were not so, the eddy 

7 AYf I"- 
Mach wave condition exists for 
small fraction of eddy lifetime 

='Ii /i ,-Path travelled by eddy 

vv.erver in near field 

FIGURE 1. Diagram illustrating the finite region from which an eddy 
emits Mach waves to the near field. 

would only remain in its Mach wave phase for a fraction of its lifetime, for 0 would 
vary singificantly (see figure 1). It is the modification of the theory to account 
for this effect that we shall describe. It has been carried out with the aim of 
extending our understanding of the high Mach number noise theory into the near 
field regions. 

The extension we seek follows directly once we can specify the effective volume 
occupied by an eddy during the time interval, where sound that arrives at the 
particular observation point (x, t )  is being generated. 

We assume that the eddy is of characteristic length 1 and that it moves down- 
stream with constant speed a,M. A fixed point on the eddy would then trace 
out a path, y1 = rl + a, Mt,  where q is the streamwise position of that point at 
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t = 0 ;  i.e. the fixed and moving co-ordinate system, y and q, respectively, 
coincide at t = 0. 

Its downstream position at the time when it must emit sound to reach (x, t )  will 
then be the particular value of yl + a,, Mt at the retarded time, t - r/a,, y? say: 

y: = y1 +a, Jlt  - J l r  = yl + a, Mt - "(x, - yT)2+ x; + xgp, (3.1) 

where the co-ordinate origin irl the directions 2 and 3 has been assumed in the 
eddy path. 

Similarly, the path traced out by a moving point, an eddy distance 1 behind the 
first point will be, y1 + Ayl = yl + I + a, Mt,  so that it emits sound a t  position 

The total effective downstream distance over which an eddy emits is then Ay: 
and this is the quantity we now seek in extending the far field theory to a near 
field situation. It is tedious but straightforward to solve equation (3.2) to bring 
out the explicit dependence of Ay: on eddy size and convective effects, and we 
find two characteristic values. The first is the familiar result for convected 
sources 1 

Ay: = (1-MCOSB)' (3.3) 

The second result is quite different, and is the one valid in regions where (3.3) 
predicts AyT to be impossibly large 

Ay: = { 21rM )* = length over which an eddy emits Mach waves. (3.4) 
(M2- 1) 

The range in the direction of emission is then 

[M($- 1))' 
(3.6) 

The limit on the near field regime is set when the observation point is sufficiently 
far from the source that the eddy remains a Mach wave generator throughout its 
coherent life. Then, as we have already discussed, the effective range Ay: is a, Mr.  

The near field may now be defined more accurately as being within the regime 
where 

We notice that for a given time scale, the near field becomes more extensive as 
the Mach number is increased, its edge, r, say, being defined by a rearrangement 
of the limiting value of the inequality, equation (3.6), 

a; 7 2  
r, = -M(M2- 1). 

21 (3-7) 

This is probably best expressed in terms of the length of the coherent waves 
clearly visible in shadowgraph pictures. Their length, L say, is a, MT sin 0, so 
that L = a,7(M2-  l)* and r,, from equation (3.7), is 

r, = B(L2/l) M .  (3.8) 
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It is difficult to conjecture on the relative scales involved, but one can see that 
positions downstream are associated with lower Mach numbers and greater 
turbulent lengths, both of which tend to reduce the volume where this particular 
type of near field is active. It is tempting to speculate that the region where the 
near field might be most evident, near the nozzle exist, is also the region where 
highly directional wavelets are visible in shadowgraph pictures, and that their 
well defined front is more associated with the near field properties than with the 
far field Mach wave emission. But it would be wrong to emphasize that point, 
because it is unnecessary to make any such assumption in understanding their 
clarity near the nozzle. The waves are in themselves focused in the Mach wave 
direction and can combine in coherent conical fronts only as long as they remain 
close to their source. They are, of course, formed by superposition of spherical 
waves and as soon as the observation point is sufficiently distant from the source, 
their spherical nature is bound to be evident. The spherical fronts will be centred 
on the general region of their birth, a feature that will undoubtedly prove useful 
in assessing the major sound producing regions of the flow. 

We conclude this discussion of the near field with the main result of the present 
analysis. That is, that the Mach waves seem to have a region in their early 
development where their strength falls off with distance from source less rapidly 
than i t  does in the far field. That strength is readily predicted by making use of 
equation (3.4) in a dimensional estimate of equation (2.6) 

Employing the usual dimensional analysis, this result predicts the mean square 
density in the near field of one eddy to vary as 

(3.10) 

In  the direction of emission there are {2r/[M(M2- 1) 13)" eddies capable of 
emitting Mach waves within a length 1. This is clear from equation (3.5) showing 
how each eddy occupies a length that is the inverse of this value. In  other 
perpendicular directions, since the integration is then an instantaneous one, the 
number of eddies per unit area is independent of Mach number. This factor 
modifies the result in equation (3.10), to make the near field Mach wave strength, 
emitted by a turbulent volume P, proportional to 

(3.11) 

These values contrast sharply with the far Mach wave field where each eddy 

p2 N p2M212/r2, (3.12) 

while the mean square density radiated in the Mach waves emitted by a fixed 
volume P has the familiar M 3  proportionality 

radiates a wave with the proportionality 
- 

- 
p2 - ji2M312/r2. (3.13) 
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From these results it would seem that the radiated field increases more rapidly 
with increasing Mach number than does the near field. The difference, however, 
is not great, being a factor proportional to ( M  - M-l)& for the pressure levels in 
the two regimes. This point is qualitatively in accord with measurements of 
radiated and surface pressure near a supersonic turbulent boundary layer 
(Laufer 1961; Kistler & Chen 1963) but that situation is not one to which the 
present theory is well suited. It would be more likely to relate the far field 
pressure with that at the outer edge of the boundary layer, or with the near and 
far field pressures in a rocket exhaust flow, but such measurements have not yet 
been attempted. Should they be contemplated, it is hoped that the theory 
presented herein would aid the interpretation of results and help make clear the 
relevance of the Mach wave field to practical flow noise problems. 

This work was sponsored by the Langley Research Center of the N.A.S.A. 
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